
hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 1 

Programming Project 
hatchibombotar.com  
Candidate Number: xxxx 
Center Number: xxxxx 
 

Table of Contents 
Introduction........................................................................................................................................................................ 2 
Project Analysis............................................................................................................................................. 3 

My Audience................................................................................................................................................................3 
Game Analysis............................................................................................................................................................3 
Game Research (cardzmania.com)..................................................................................................................4 
Game Research (skribbl.io).................................................................................................................................. 5 
Game Research (Among Us)............................................................................................................................... 6 
Conclusions from Game Research....................................................................................................................9 
Feature List............................................................................................................................................................... 10 

Technical Analysis.......................................................................................................................................12 
Web communication technologies................................................................................................................. 12 
Software Requirements....................................................................................................................................... 13 
Hardware Requirements..................................................................................................................................... 13 
Computational Methods......................................................................................................................................13 
Limitations.................................................................................................................................................................14 
Success Criteria.......................................................................................................................................................14 

Plan for Development and Testing....................................................................................................... 16 
Development Plan.................................................................................................................................................. 16 
Testing Plan............................................................................................................................................................... 16 

Design Overview......................................................................................................................................... 19 
Overall structure......................................................................................................................................................19 
Communication......................................................................................................................................20 
Server Design........................................................................................................................................................... 21 
Client Design.............................................................................................................................................................26 

Iterative Design & Development...........................................................................................................31 
Stage 1......................................................................................................................................................................... 31 
Stage 2........................................................................................................................................................................ 45 
Stage 3 / 4.................................................................................................................................................................55 
Stage 5........................................................................................................................................................................ 69 
Play Test 1...................................................................................................................................................................83 
Play Test 2.................................................................................................................................................................. 87 

Evaluation..................................................................................................................................................... 89 
Reviews....................................................................................................................................................................... 89 
Video Showcase......................................................................................................................................................90 
Implementation of features..............................................................................................................................90 
Integration Testing................................................................................................................................................ 92 
Meeting Success Criteria....................................................................................................................................94 
Evaluation Summary............................................................................................................................................ 98 
Conclusion to the project................................................................................................................................. 100 

References...................................................................................................................................................101 
 

http://hatchibombotar.com
http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 2 

Introduction 
Cheat is a card game where players try and get rid of all of their cards while trying to 
deduce if your opponents are lying or not. It is taught by oral tradition, meaning it comes 
under many names and the origin is largely unknown. 
 
The entire deck of cards is split between the players and on each turn players place down a 
number of cards and state which cards they played or what they want their opponents to 
think they placed. If opponents believe the person was lying they can say “Cheat” and if they 
were lying they have to pick up the entire discard pile. Once a player has run out of cards, 
they are the winner. 
 
In this project, I am going to apply a computational approach to the game of cheat to 
create an online alternative to the card game that allows friends to play together from 
anywhere in the world. 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 3 

Project Analysis 
In this section, I aim to outline the essential features of a computational approach to my 
game. By the end of it, I will have researched existing solutions to the problem and along 
with my stakeholders will decide what makes these solutions successful, condensing my 
research into a list of features. 
 

My Audience 
My target audience are students, where they will play against their friends in their free time 
for fun and where they are unable to meet in person. 
 
To gain feedback for my project, I have asked people from my target audience to help who 
have played "Cheat" before. They are going to help by testing and evaluating my game 
during and after the development of it. Throughout my project I will refer to them by Person 
1, Person 2, and Person 3. 
 

Game Analysis 
An analysis of how the “Cheat” card game is played in real life so that I have a secure 
understanding of what is required in the project. 
 
Setting Up: 

-​ The deck of cards is shuffled 
-​ The cards are split between the players with cards being dealt one at a time in a 

clockwise direction starting from the person left of the dealer 
-​ The person left of the dealer starts their turn by putting 1-4 cards down of the same 

rank 
 
On a person's turn: 

-​ The person places 1-4 cards from their hand onto the discard pile. The card should be 
one rank up from the previous card. If the player does not have the card needed to 
be placed, they can lie and place any 1-4 cards from their hand down. 

-​ If there are no cards in the discard pile: 
-​ The person places 1-4 cards down, creating the discard pile for the next turn 

-​ The person playing then calls out what cards they placed. They can either say the 
truth, or lie in order to put more cards down than they have available to play.  

-​ After their turn, any other player can say "cheat". The top of the discard pile is shown 
to everyone and if the player cheated they pick up the whole discard pile. If they did 
not cheat, then the one who said "cheat" is the one that has to pick up the cards. The 
play continues from the person following the one that picked up the cards 

 
Ending the game: 

-​ Once a player has placed all of their cards down, and they don't need to pick their 
cards up after cheating, they have won the game and it ends. 

 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 4 

Game Research (cardzmania.com) 
cardzmania.com is a website that hosts many different card games, one of them being 
Cheat.  
 

Waiting Menu 

 
 

-​ At the top of the screen, the host can choose how many rounds will be played before 
the game ends 

-​ There is a list of all the players in the game as well as player icons 
-​ Friends are invited to the game using a link that has to be shared 
-​ There is a chat feature at the bottom of the screen for players to talk 
-​ The host can press the start button when enough players have joined. If insufficient 

players have joined then an error will show. 
-​ Players can leave at any time 

 
Play Screen 

 
 

-​ Players are displayed around the screen with their name, icon, cards, and points won. 
-​ A value counter that shows the value of the card the current player should be playing 

on their turn 
-​ Cheat button to accuse the previous player of cheating 
-​ A list of cards in a player's hand 
-​ An emoji button to show emoji reactions to other players 
-​ A menu button that allows players to leave the game 
-​ A green background simulating the look of a card table. 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 5 

Game Research (skribbl.io) 
skribbl.io is a multiplayer online drawing game where players can play with their friends. 
In this game, players create a game and are able to share a room link with their friends in 
order to play together. Although the concept of the game is completely different to my 
project, the user interface and multiplayer system is something I will take inspiration from. 
 

Main Menu 

 
 

-​ The main menu for skribbl.io directly has buttons to play or create a private room 
-​ Players enter their name into an input box before joining the game 
-​ It also contains customisation features in the way of its character creator 
-​ Users can select their language in order to get put into games with specific drawing 

prompts 
 

Waiting Menu 

 
 

-​ The waiting menu is displayed before everyone joins the game and the host presses 
start. 

-​ A list of all the players in the game is shown on the left of the screen 
-​ The game options are shown in the middle of the screen to all players, and are 

editable by the host. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 6 

-​ The host player can press "Start!" as soon as there is more than one player in the 
game 

-​ The cog icon on the top right allows players to edit player-specific options. 
-​ There is a chat box on the right side of the screen, which is used for guessing later 

when the game begins. 
 

Game Research (Among Us) 
Among Us is an online social deduction game where players work together to deduce which 
one of them is trying to wipe out the crew. The reason I am researching this is to look at a 
variety of multiplayer systems in order to take the best components of each. 
 

Join Game Screen 

 
 

-​ The menu for joining games in Among us contains three main flows that users can 
take: creating a game, joining a public game, or joining a private game. 

-​ The "Create Game" button brings you to the options screen before putting you in a 
fresh game in the waiting screen. 

-​ The "Find Game" button displays a panel which lists out public games that players 
have created 

-​ The "Enter Code" box allows you to enter a game code of a game created by a friend. 
When pressing enter you are brought to the waiting screen. 

-​ It also includes a friends feature where players can join games with people they have 
friended. 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 7 

Options Screen 

 
 

-​ When the "Create Game" button is pressed, an options screen comes up to change 
rules, such as the number of players in the game and the type of game being played. 

 
Waiting Screen 

 
 

-​ Unlike the other games I have researched, the waiting menu is a physical world that 
players can move around in before the game begins. 

-​ Information about the game, such as the room code, players in the game, and game 
settings are displayed in a panel on the top right corner of the screen. 

-​ Players can open the in-game chat to communicate with other players 
-​ Per-player settings can be edited when the cog button is pressed, such as controls. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 8 

Conclusions from Game Research 
After my research on all three games, I asked my target audience for their thoughts on all 
three games, aiming to get insight into what made the games good and bad, specifically 
when looking into multiplayer features for the second two games. 
 
For the research on the cardzmania cheat game, the following points were mentioned by my 
stakeholders: 
On the waiting screen: 

-​ The menu is very cluttered and hard to understand 
-​ The chat box is fun 
-​ Sending a url is quite a lot of effort 
-​ There is no point in the points feature 
-​ It is good that you can start from a random person. 
-​ The video feature is interesting as it could allow you to see the facial expressions of 

other people. 
On the play screen: 

-​ Ordering cards based on card numbers is good 
-​ Again the UI is confusing 
-​ The cheat button is too small for a crucial part of the game 
-​ The value counter is confusing for players. 

 
From this, I found that although the cardzmania game was functional, the user interface was 
exceedingly cluttered and confusing, and keeping the UI clear should be a key focus for my 
game. My stakeholders liked the video and chat features however given the time limitations 
I will be focusing on the core feature set of the game and so these features will be omitted. 
 
In terms of multiplayer features, two out of my three main stakeholders said they preferred 
the system used by Among Us (where players had to enter a room code to join the game) 
and one preferred the system used by the other two games researched (where a url is shared 
to join the game). All players said they liked the chat systems built into the game however I 
have chosen not to include this as it does not match the level of abstraction I am looking for 
in my project and it is not necessary for the intended use of the game, in which people 
communicate while the game is being played. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 9 

Feature List 
The list of essential features that will be required in the solution to the project. 
 

Requirement Justification 

A start screen with options to join or create 
a game 

The player needs to be able to choose when 
they play and who they play with. 

The ability for players to change their 
display name on the start screen 

This is how it works in two of the games I 
have researched, in Among Us the display 
name must be changed in settings. 

Game rooms are assigned a code by which 
players can join rooms by entering the code 
on the start screen. 

This was the most popular system for 
joining games from my research (2/3 of my 
stakeholders preferred this system). 

A "waiting" ui screen All three of the games I have researched 
include some form of waiting ui screen. 

A list of players on the waiting screen So that players can see if and when their 
friends join the game 

A start button So that the host player can begin the game 

An exit button visible on both the waiting 
and in-game screens 

If players need to leave during the game 
they can press the exit button instead of 
refreshing the page 

Before the game starts, the cards are 
placed in a random order and split evenly 
between players, one by one in the order 
that players join.  

the game should be fair and cards should 
be evenly distributed. 

After someone presses “Cheat”, the game 
begins again from the person after the one 
who was challenged. 

So that another round of gameplay can go 
ahead. 

During the game, players are able to see 
how many cards their opponents have, as 
well as whose turn it is. 

When playing the real game, you need to 
be able to see how many cards other 
players have to influence if you want to say 
cheat or not. 

At the end of a player's turn, they select 
what cards they want to play and the 
correct value for these cards are shown to 
everyone. 

When playing in real life, players say what 
cards they are playing out loud. As players 
may not be able to hear each other, this 
functionality needs to be built into the 
game. In addition, the game needs to know 
what cards they say they placed to check if 
a player was cheating. 

On a turn, players can move their cards 
between their hand and the discard pile 

It should be easy to choose what cards 
they play in a way similar to what it is like 
when playing the game in real life. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 10 

At any point in the game, players can press 
the “Cheat” button, and if the previous 
player was lying, they pick up the cards. 
Otherwise, the player who pressed the 
button picks up the cards. 

the players need to be able to check if one 
of them is cheating. 

When a game ends, the winner is displayed 
and players have the option to start 
another round. 

It would be very annoying if the players 
would have to create a new game room 
from scratch every time they finish a round. 

If a player leaves the game mid way 
through, their cards are placed on the 
discard pile. 

It would ruin the game if some of the cards 
were out of play for the remainder of the 
game or if their turn was not taken and the 
game was stuck forever. 

 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 11 

Technical Analysis 
In this section, I will be researching the technical requirements of my project in order to 
begin to get an idea of the direction of my project, including what software/libraries I will be 
using. 
 
To begin with, I need to decide on what architecture I will be using. If the architecture is 
client-server I will need to make a decision on a backend and frontend language, whereas if 
I go for a peer-to-peer architecture then I will only require a single language. I looked at 
some examples of web communication technologies in order to make my decision: 
 

Web communication technologies 
 

Technology Description  

Websockets API A websocket connection is 
opened which is kept open for the 
lifetime of the application being 
run. Messages can be sent across 
this channel between the clients 
and servers 

Advantages: 
-​ The server controls all of 

the logic so cheaters can 
not take advantage 

 
Disadvantages: 

-​ A server always has to be 
running 

WebRTC A connection is opened between 
clients and data is sent between 
them. 

Advantages: 
-​ is that the server does not 

run the game logic, 
instead the logic is run off 
of the clients. This would 
mean less stress on the 
server 

 
Disadvantage: 

-​ increased complexity over 
websockets as the API is 
less abstracted and  

Polling Clients make continuous requests 
to the server, if the server has a 
message for the client, it will 
respond with that message. 

Advantages 
-​ Based off of basic http 

requests 
Disadvantages 

-​ Outdated 
-​ Continuous requests -> 

more stress on the server 
-​ More complicated to link  

Long Polling Long Polling is an improved 
technique over polling where 
instead of sending continuous 
requests, it instead sends a single 
request then sends another when 
a response is received. 

Advantages 
-​ Fewer requests over basic 

polling 

 
From these, I decided to go with the websockets api because of its reduced scope of 
features combined with it being a fairly modern standard. The drawback of this will be that I 
need a server running to handle the games as they are played. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 12 

 

Software Requirements 
Now that I have decided to go for a client-server model using the websocket api I am able 
to decide on what languages and libraries to use. 
 
On the client side, I will be using raw javascript. I have chosen this as it will reduce the 
complexity of my project due to not needing a transpilation step which would be there if I 
were using a language like typescript. This should help speed up development of the project. 
 
For the server, I have decided to use nodejs as it will allow me to use javascript on both the 
client and server which I hope will reduce the duplicate or redundant code as well as making 
sharing data easier. 
 
I have identified two libraries that I will be using in my project: 

-​ "express" - a minimalist web framework - this is a popular web framework and will 
allow me to run the server and it seems to integrate well with  

-​ "ws" - a nodejs websocket implementation - this will allow clients to connect their 
websockets to the server to join and exchange information about ongoing games. 

 
I will be using the windows operating system to develop my project however as far as I can 
tell it would not be locked into windows. NodeJS is a cross-platform runtime so a server 
could potentially be deployed on linux. Clients will connect to the server using their web 
browser which is not locked to a specific operating system. 
 

Hardware Requirements 
For the server, nodejs does not have any minimum requirements in the way of memory or 
cpu performance. The amount of memory required will depend highly on the number of 
players in the game concurrently. Javascript is a single threaded language so only one core 
is essential in terms of the, although it may benefit from additional cores as the runtime 
itself may have other processes that could work on multiple threads. Because of the high 
dependency of the program itself for memory and processor requirements I will not be able 
to find an accurate estimate of the minimum hardware requirements. 
 
This said, I will be testing the server using: 

-​ 16GB of RAM 
-​ AMD Ryzen 7 7840U 

-​ Clock Speed 3.30 GHz 
-​ 8 Cores 

 
My game is going to be primarily designed for keyboard and mouse users. 
 

Computational Methods 
Thinking abstractly 
In terms of project structure, I will be using abstraction by representing the game, player, 
and cards as classes. Doing this will make my program more readable and maintainable as it 
creates a natural separation of logic. 
 
For the design of the project, I am going to be abstracting the game state by only showing 
the face up cards in a player's hand instead of the entire state of the game. In addition, the 
cards will be represented by 2D shapes instead of an entire 3D object. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 13 

 

Thinking ahead 
The game is going to need a screen for deciding to create or join a game, a screen that is 
shown while everyone is waiting for the game to begin, and of course the game itself. 
 
In the game I will be using a mouse as the primary input method as it mimics how the card 
game would be played in real life and is also the most appropriate for a problem containing 
many ui elements. 
 

Thinking procedurally & logically 
In order to create a multiplayer environment for my game I am going to need a central 
place to handle the logic of the game. Because of this requirement, I will be using a 
client-server architecture where players interface with the server in order to join and play 
rounds of the game. 
 
On the server side of things, its main functionality will be to handle incoming requests from 
clients: doing different things based on what the request is asking. In addition, it will be 
coordinating the game loop: sending and receiving appropriate requests based on the 
current stage of the game. 
 
Clients will also need the ability to communicate with and handle requests from the server, 
running code conditionally based on the action. For example, an event that indicates the 
game has started would need to change the screen being shown from the waiting screen to 
the screen containing the game. 
 

Thinking concurrently 
My project will need to be able to do many things simultaneously. For example, multiple 
games being able to be played at the same time. In addition, I will need to keep in mind that 
players may complete actions in an unexpected order, for example at some points a player 
may either place cards or another player will press the cheat button. 
 
To solve this, I will be using event listeners and asynchronous features in NodeJS such as 
promises and the async/await keywords. In addition, I will conduct tests of multiple games 
running simultaneously to check if requirements are reached. 
 

Limitations 
During the period of development I will be limited by time, meaning I will only be spending 
limited time on sections of the project that do not award marks, such as art and making all 
screens of the UI aesthetically pleasing. Despite this, I will aim for consistency in how UIs 
are designed and look in order to maximise the experience of my stakeholders. In addition, I 
do not have access to a large number of people so testing to check if my game can handle 
itself under pressure and with many concurrent games going on may be limited. 
 

Success Criteria 
 

Criteria Test 

The game includes all of the features specified 
in the project analysis. 

All aspects of the feature list are 
completed. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 14 

The game is able to handle multiple games 
running simultaneously. 

Two games can run simultaneously 
 
(Given access to a wider audience of 
testers I would have wished to run more 
extensive tests than this - see more in 
my limitations section above) 

The game UIs are easy to navigate. Two-thirds of testers follow the expected 
path navigating user interfaces and 
two-thirds say the UIs are easy to use 

Players should be able to leave games at any 
point without breaking gameplay. 

For each decision point, have a player 
leave the game at this point. 

No information critical to gameplay (e.g. the 
cards in opponents hands) should be accessible 
to clients under any circumstance unless it is 
specifically for their use. 

Check every event that is sent to the 
client during the lifespan of a game 

The game should be able to prevent illegal 
moves (e.g. placing a card when it is not their 
turn) 

Check each event handler, it should have 
appropriate safeguards and validation 
techniques to ensure the event is valid. 

The game should be enjoyable Two-thirds of testers say that they find 
the game to be enjoyable 

 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 15 

Plan for Development and Testing 
Development Plan 
During the development of my project, I am going to be following an iterative development 
process according to the agile methodology as this will help create the best product 
alongside the assistance of my client. To begin with, I will be going through the below stages, 
gathering feedback on it as I go along: 
 

1.​ Client: Create main menu and waiting screen​
Server: Write game room logic and allow clients to create/join them. 

2.​ Client: Start work on the main game interface. Display a list of cards for the player's 
"hand", let them select the cards they want to play and allow them to put them back 
in their hand. 
Server: Tell the clients the game has started once the "host" player has pressed start. 

3.​ Client: Only allow cards to be moved on your turn, and press a done button when the 
player is ready to place them.​
Server: Write a basic game loop, going from one player's turn to the next. Tell clients 
when it is their turn to play. 

4.​ Client: Add a button that allows players to accuse a cheater 
Server: Check if players are cheating when a player presses cheat. Add the cards on 
the table to the hand of the cheating player. Start the round fresh with the player 
following the one challenged. 

5.​ Client: Create the game over screen, show the winner. 
Server: Once a player has placed down their last cards and are unchallenged, they 
win and the clients are told about this. Exit the game loop. Make sure that any players 
that leave are handled properly and the game can be continued to be played. 
 

Following this, I will go through stages where I will: 
-​ Check all the success criteria has been met 
-​ Test the game with some of my stakeholders 
-​ Make sure there are no critical issues or bugs with the game 
-​ Otherwise make improvements to the game 

 

Testing Plan 
Testing plans for each stage of the project explained in the above development plan. 
 

Stage 1 
 

# Test Expected output Justification 

1 A valid username is 
entered and the create 
room button is pressed 

the screen changes to the 
game waiting screen and a 
room code is displayed on 
the screen 

To check if the players can 
join a game 

2 A valid username and valid 
room code is entered and 
the user presses join game 

They are able to join the 
game with no problems. 
the screen changes to the 
game waiting screen 

Invalid data, check if it is 
handled correctly. 

3 An invalid room code that 
does not exist is entered 

An error is displayed 
stating the room does not 

Invalid data, check if it is 
handled correctly. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 16 

and the user presses join exist 

4 An invalid username is 
entered with a valid room 
code 

when the user tries to join a 
game an error is displayed 
saying the username is 
invalid 

Invalid data, check if it is 
handled correctly. 

5 When a new player joins 
the game, the player list 
updates 

the player list updates to 
display the player that has 
joined 

Check if the player list 
update event send when a 
player joins 

6 A player leaves the game They are removed from the 
player list 

Check if the player list 
update event send when a 
player leaves 

7 The host player leaves the 
game 

A new player is chosen to 
be the host 

Makes sure there is always 
a host player in the game 

 

Stage 2 
 

# Test Expected output Justification 

1 The host player presses the 
start game button 

The waiting screen is 
hidden for all players and 
the game screen is now 
shown for all of them. 

Checks if the game can be 
started 

2 A player presses on one of 
the cards in their hand 

The card is moved to the 
centre of their screen 

checks that cards can be 
placed on the table 

3 A player presses on one of 
the cards previously 
selected 

It returns to their hand checks that cards can be 
moved back to the hand 
form the table 

4 A player presses on one of 
their cards when there are 
four already on the table 

Nothing happens. check to make sure that 
players cannot place more 
cards than they are 
allowed to 

 

Stage 3 
 

# Test Expected output Justification 

1 A player on their turn 
presses the done button 

the cards in their hand are 
sent to the server. It is now 
the next player's turn and 
the previous player can no 
longer move their cards. 

Check what happens when 
a player's turn is finished 

2 A player on their turn 
presses the done button 
without placing cards 

a message is shown that 
states they need to place 
cards down. 

check that a turn can only 
be ended if cards have 
been placed 

3 A player presses on a card 
without it being their turn 

nothing happens check that the server is 
only checking for the 
current player's events 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 17 

4 The last player ends their 
turn 

The game loops back to 
the first player's turn. 

Check that the game loops 
correctly 

 

Stage 4 
 

# Test Expected output Justification 

1 A player presses cheat 
when another player was 
cheating 

the cards on the table go 
into the hand of the 
cheater 

Check that the cheat 
detection code works 
correctly 

2 A player presses cheat 
when the other player was 
not cheating 

the cards on the table go 
into the hand of the 
accuser 

Check that the cheat 
detection code works 
correctly 

3 A player presses cheat play continues from the 
one after the player 
challenged 

Check that the turn order 
works correctly 

 

Stage 5 
 

# Test Expected output Justification 

1 A player places the last 
cards in their hand and the 
following player takes their 
turn 

The player that placed the 
last cards down wins, show 
game over screen 

Check that the end of 
game condition is correctly 

2 A player leaves the game The cards from their hand 
are moved to the discard 
pile 

Check that players leaving 
mid-game will not break 
the game 

3 A player leaves the game, 
bringing the total number 
of players below 3 

The game ends. Show the 
game over screen. 

Check that players leaving 
mid-game will not break 
the game 

4 A player leaves the game 
on their turn 

The next player's turn 
begins 

Check that players leaving 
mid-game will not break 
the game 

5 A player leaves the game 
after placing cards 

cheat can not be called on 
them 

Check that players leaving 
mid-game will not break 
the game 

 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 18 

Design Overview 
In this section, I will be giving an overview into the design of my program. It will contain 
information going into the structure, user interfaces and expected behaviours of my game. 
In addition to this section, I will design the in-depth stages of my program iteratively, 
written up preceding each development stage. 
 

Overall structure 
To begin with I decomposed my game, breaking it down into its core components which can 
be solved independently. 
 
Structure Diagram 

Card Game 
-​ Server 

-​ Websocket connections 
-​ Request handling 

-​ Create a game 
-​ Join a game 

-​ Game loop 
-​ Client 

-​ Main Menu UI 
-​ Name entry box 
-​ Room code 
-​ Join Game Button 
-​ Create Game Button 

-​ Waiting Screen UI 
-​ Start Game Button 
-​ Player list 

-​ Game UI 
-​ Hand 
-​ Selected Cards 
-​ Discard Pile 
-​ “Cheater” button 
-​ Exit Button 

-​ Game Over Screen UI 
-​ Game over text 
-​ Play again Button 
-​ Exit Button 

 
I have separated the game into a client and server module. This is the required architecture 
for a websocket-based game (which is what I settled on in my technical analysis) and clients 
will connect to the server using a websocket in order to send and receive actions.  
 
Within the client, I have split the structure out into individual UI screens. I have done this as 
the majority of the client has different requirements for each screen. In addition, I believe 
that I will be able to develop the client side code incrementally where one screen is done 
before the next. 
 
On the server side of the project, I have broken the problem down into the three main 
components I believe I will have to deal with. The first is the initial connection with 
websockets, the second is the handling and responses of requests between the server and 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 19 

clients and the last of which is the running of games, specifically the game loop which is 
where the logic behind everything will be contained. 
 
From here I will be able to work on each section independently to create designs that I can 
use to guide my development. 
 
 

Communication 
As stated in my technical analysis, I am going to be using the websockets api and so my 
project is split into a client and server. 

 
In order to have an ongoing online game, data has to be sent between clients and my server. 
The websocket api supports sending data as a string, binary object or buffer. For my 
purposes I will be using strings containing JSON data. Before I send/recieve an action I will 
parse/stringify the data object I am sending. I will also have an "action" property on each 
object which states which action is being sent, for example: 
 

{ 
​ "action": "join_game", 
​ "code": "ABCDEF", 
​ "name": "My Username" 
} 

 
When the server receives an action it will handle it, and then send relevant response events. 
For example, when a client presses the create game button and valid input is given, the 
following responses will be sent back from the server. This will let the client know that the 
action was successful, they are the host player, and the content of the player list. 
 

 

 
 

Below I have laid out all of the actions I am planning on initially implementing: 
 

Action  Description additional attributes 

create_game  Client -> Server Send when a player wants to 
create a game room 

name - string 

join_game  Client -> Server Sent when a player wants to 
join a game 

name - string 
room_code - string 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 20 

leave_game  Client -> Server Sent when a player wants to 
leave a game 

 

join_game  Server -> Client Sent when the server has 
added a player to a room. 

room_code - string 

player_list_update  Server -> Client Sent when a new player joins 
the game 

player_list - Player[] 

become_host  Server -> Client Sent from the server to the 
client to indicate they are now 
the "host" player 

 

start_game  Client -> Server Sent when the "Start Game" 
button is pressed 

 

start_turn  Server -> Client Sent to all players when 
somebody’s turn starts 

your_turn - boolean - set 
to true if it is this player’s 
turn. 
previous_card - Card 

update_cards  Server -> Client Send when a player's cards 
are updated, either due to 
picking cards up or starting 
their turn. 

cards - Card[] 

place_cards  Client -> Server Sent once a player has 
selected the cards 

cards - Card[]? 

place_cards  Server -> Client Sent when a player has 
selected their cards 

 

accuse_cheater  Client -> Server Sent when a player presses 
the cheat button 

 

 
Now, when one of the above messages is received from a client, I need to trigger different 
event handlers depending on what action has been sent. 
 

Server Design 
Below are the event handlers that communicate with clients before the game begins. In the 
"create_game" and "join_game" handlers I check for the presence of a username in the 
request to make sure every player has a name. I also check for the existence of a game with 
the provided code and return if it doesn't exist. 
 

SERVER - Event handlers 
On action "join_game": 
  Check player's name exists, return otherwise 
  Get game object 
  if game object does not exist, return 
  Add player to game 
 
On action "create_game": 
  Check player's name exists, return otherwise 
  Generate game code 
  Create game object 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 21 

  Create player object 
  Add player to game 
 
On action "leave_game":​
  Remove player from game 
 
On action "start_game": 
  Start game loop 

 
Other actions will solely be handled within the game loop. 
 
Now for the actual data structures: players, games, and cards will be represented using 
classes containing data and methods relating to them. 
 
For the game class, it will contain the game code associated with it, a list of the players, and 
the cards on the table.  

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 22 

 

Game 

code - string 
players - Player[] 

tablecards - Card[] 

startGame() 
gameLoop() 

addPlayer(player) 
removePlayer(player) 

 

SERVER - Game Class Methods 
Add Player: 
  add player to players array 
  tell clients the new players list 
Remove Player: 
  remove player from players list 
  if player was host: 
     add new player as host 
   
Start Game: 
  Generate deck of cards 
  Shuffle deck of cards 
  while deck has cards: 
    for each player: 
       if deck has cards: 
           pop the top card off the deck 
           add the card to the player's hand 
   
  for each player: 
     send "game_start" action 
     send "update_cards" action 
   
  start game loop 
 

 
For the actual game loop, I initially created a flow chart so I could visualise how it should 
work. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 23 

 
 

SERVER - Game Class Methods (Continued) 
Game Loop: 
  table_cards = [] 
  just_placed_cards = [] 
  previous_rank = 0 
  while game ongoing: 
    for each player: 
      broadcast action "turn_start" 
      send "update_cards" event to current player 
      wait for "place_cards" event or any "accuse_cheater" event 
 
      if event is "place_cards" then 
        table_cards = table_cards + just_placed_cards 
        set just_placed_cards to cards in event 
 
      else if event is "cheat" and len(just_placed_cards) > 0 then 
        cards_to_pickup = table_cards + just_placed_cards 
 
        if all of just_placed_cards == previous_rank then 
          give cards_to_pickup to accuser hand 
        else 
          give cards_to_pickup to cheater hand 
        endif 
 
        table_cards = [] 
        just_placed_cards = [] 
     endif 
 
     previous_rank += 1 
     if previous_rank > 12 then 
       previous_rank = 0 
     endif 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 24 

 
   next player 

 
For players within the game, each of them is to have their own object. It will contain an id to 
identify them, a hand array containing a list of cards, a reference to the game they are 
playing within, and a reference to the websocket that is used to communicate with them. 
 

Player 

id - number 
hand - Card[] 
game - Game 

ws - websocket connection 

 

 
 
 
Cards will also be stored as objects. they will contain a number that is associated with their 
rank and a string for their suit. 
 

Card 

rank - number 
suit - string 

 

 
For simplicity when comparing card values I have reduced their ranks into numbers 
representing each rank: 
 

A 2 3 4 5 6 7 8 9 10 J Q K 

0 1 2 3 4 5 6 7 8 9 10 11 12 

 
Below are the functions that I am going to be implementing in order to shuffle and handle 
cards. 
 
For the shuffling algorithm, I will be using the Fisher-Yates algorithm as it is unbiased. 
 
For the sorting algorithm I will just be using the built in javascript sort method as there is no 
reason to reinvent something that already exists for me to use. 
 

SERVER 
function generateDeck() 
  deck = [] 
 
  for each rank: 
    for each suit: 
      add new Card(rank, suit) to deck 
 
  return deck 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 25 

 
function shuffle(deck) 
  for i = n−1 to 1 step -1 
    j = randomint(0, i) 
    temp = deck[i] 
    deck[i] = deck[j] 
    deck[j] = temp 
  next 
 
function sort(deck) 
  // sort using the built in javascript array sort method 
 

 
File Structure 
I am going to separate each class into its own file/module. For example, the game class will 
have its own module, the player class will have a module, and the card class will have its own 
file. Related functions will also be contained in these modules. 

Client Design 
Now onto the client side of my project, the structure will be quite similar to the server. The 
main logic of the client will be concentrated on communication between itself and the server. 
Like the server, it will have a variety of server actions it will respond to through websocket 
event listeners. 
 
In order to create and join game rooms the following event handlers will be used: 
 

CLIENT - Event handlers 
On action "join_game": 
  Hide main menu screen 
  Show waiting screen 
  set game code element 
 
On action "update_player_list": 
  Remove player list content 
  For each player: 
    Add name to player list 
 
On action "become_host": 
  Show "Start Game" button 
 
On action "start_turn": 
  show "Your turn" text 
  allow moving cards between hand and table 
  enable end turn button 
 
On action "update_cards": 
  update card list 
 
On action "place_cards": 
  Update just placed text 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 26 

Each "screen" on the client will be contained in an html div element. The client code will have 
a reference to each of them saved in variables and will show/hide these elements when 
needed in response to actions or events from the server. 
 

Main Screen 

 
 

CLIENT 
Press "Create Game": 
  send "create_game" event with name from "Name" input element 
 
Press "Join" 
  send "join_game" event with code from "Game Code" input element 
 

 
Waiting Screen 

 
The waiting screen will also be created with html/css elements. 
 

CLIENT 
Press "Start Game": 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 27 

  send "create_game" event with name from "Name" input element 
 
Press "Exit": 
  send "leave_game" event 
  hide waiting screen 
  show main menu 

 
 

Play Screen 

 
 
For creating the play screen for my project, I had to decide if i wanted to use a canvas or 
html dom elements for representing my UI. 
 
Overview of using a canvas 
If I were to use a canvas for the game, I would be able to control every element of what is 
displayed on the screen. For UI elements, I would be drawing ui using an immediate mode 
paradigm. This means that I would have to explicitly draw every card, the text, etc every 
frame. The advantage of this approach is that I would be able to control every pixel on the 
canvas. 
 
Overview of using html elements 
If I were to use just html dom elements, I would be using a retained mode GUI paradigm. 
This means I would only reference and modify ui elements when an event or server action 
occurs. In addition, I would be able to leverage the features built in to html/css to create a 
responsive game that adapts to the screen it is being played on. 
 
Overall, I decided to go for the approach of using html elements as it would work the best 
with the push-based action system described in the server design. 
 

CLIENT 
Press card in hand: 
  if handCards length < 4 then 
    remove card from handCards 
    add card to selectedCards 
 
Press selected card: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 28 

    remove card from selectedCards 
    add card to handCards 
 
Press "Play Cards": 
  send "play_cards" event with contents of selectedCards 
 
Press "Cheat": 
  send "accuse_cheater" event 
 
Press "Exit": 
  send "leave_game" event 
  hide play screen 
  show main menu 

 
 

CLIENT 
function Update Cards: 
  remove contents of selected cards element, hand cards div 
  for card of handCards: 
    add card to hand cards div 
     
  for card of selectedCard: 
    add card to selected cards div 
 

 
 

Game Over Screen 

 
 

This is the screen shown once a player has won the game. 
 

 

CLIENT 
Press "Play Again": 
  send "play_again" event 
 
Press "Exit": 
  send "leave_game" event 
  hide play screen 
  show main menu 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 29 

 

Client - Main Variables 
 

Variable Type / Structure Description 

socket websocket the websocket used to 
communicate with the 
backend server 

joinGameScreen html element the html element containing 
the join game screen 

waitingScreen html element the html element containing 
the waiting screen 

playScreen html element the html element containing 
the play screen 

endScreen html element the html element containing 
the end screen 

handCards ClientCard[] All the cards currently in the 
player's hand 

selectedCards ClientCard[] The cards the player has 
selected 

 

Client - Functions 
 

Function Description 

joinGame Ran when someone presses the join game button on the 
main menu 

startGame Ran when someone presses start game  

receiveMessage Triggered when a message is sent from the server 

 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 30 

Iterative Design & Development 
Stage 1 
Create the main structure of the program, display the webpage, and allow clients to join a 
game "room". 
 

Development 
1.1 
To begin with, I initialised my node js project, and created a base structure and the required 
files to 

1.​ Start a server 
2.​ Host html/js files which are accessible locally 
3.​ Setup, send and receive websocket messages 

 
server/main.js 

 
client/index.html 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 31 

 
client/index.js 

 
Note: I am going to leave the message receive function inlined here rather than creating a 
separate receiveMessage function as stated in my designs as it will only be called from this 
context as an event handler and so is not needed elsewhere. 
 
This worked well, with the test message being sent both to the client and the server. When a 
page with an active websocket is closed, the server is also told about this. 
 
Client Output: 

 
Server Output: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 32 

 
 
1.2 
I then created the necessary ui elements for the main menu and waiting screen, as below: 
 
client/index.html 

 
 
And once styled, the main menu looked like this: 

 
1.3 
To add functionality to it, I needed to create classes for Player and Game as below: 
server/player.js 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 33 

 
server/game.js 

 
 
1.4 
I decided to use a map data structure instead of a list (as I stated in my design) for storing 
the game objects. This is because using a list would mean that I would have to loop over 
them until the correct game is found. In addition, each game already has a unique id so this 
can be used again for the map key. 
 
Accessing games using the game Map: 

 
 
1.5 
To respond to actions on the server, I added the following logic to the server's message 
event listener: 
server/main.js (join game message handler) 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 34 

 
 
This checks if the client has sent valid information, and if so it will call the addPlayer method 
on the required game object, otherwise it will send an error to the client. 
 
Below is the mentioned addPlayer method defined on the Game objects. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 35 

 
Also in the join game message handler is the use of a new message type "join_game_room" 
which I added when I realised that there was no way for the server to communicate to the 
client that an error occurred if incorrect input was provided. The action has one attribute 
containing the required error message. 
 

Action  attributes 

join_game_error  Server -> Client message - string 

 
When sent to the client the error looks like this: 

 
1.6 
server/main.js (create game message handler) 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 36 

 
While conducting end of stage testing, I found that I had no way to test if a player was 
indeed the "host" player. I added an attribute to the client player objects sent "isHost" to tell 
clients about it. 
 
I filled in the generateCode function which generates a random code out of 5 alphabet 
characters. It does this by creating a random offset from the "a" character and then adding 
it to the "a" character's character code, before turning the character code back into text. 
It puts these all together and then returns the code. 

 
 
1.7 
Finally, I added the leave_game message handler, which calls the removePlayer method on 
the game. 
server/game.js 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 37 

 
I also extracted the logic for updating the player list into its own method as it was 
duplicated in both addPlayer and removePlayer. 

 
 

End of Stage Testing 
 

# Test Expected 
output 

Output Output Description 

1 A valid username 
is entered and the 
create room 
button is pressed 

the screen 
changes to 
the game 
waiting 
screen and a 

1. 
 

1.​ Before pressing 
the "Create 
Room" button 

2.​ After Pressing 
"Create Room" 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 38 

room code is 
displayed on 
the screen 

 
2. 

 

2 A valid username 
and valid room 
code is entered 
and the user 
presses join game 

They are able 
to join the 
game with no 
problems. the 
screen 
changes to 
the game 
waiting 
screen 

1. 

 
2.  

 

1.​ Before pressing 
the "Join Room" 
button 

2.​ After Pressing 
"Join Room" 

3 An invalid room 
code that does 
not exist is 
entered and the 
user presses join 

An error is 
displayed 
stating the 
room does 
not exist 

1. 

 
2. 
 

1.​ An invalid room 
code is entered 

2.​ An error message 
is displayed 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 39 

 

4 An invalid 
username is 
entered with a 
valid room code 

when the 
user tries to 
join a game 
an error is 
displayed 
saying the 
username is 
invalid 

1. 

 
2. 
 

 

1.​ Before pressing 
"Join Room" 

2.​ After pressing 
"Join Room" 

5 When a new 
player joins the 
game, the player 
list updates 

the player list 
updates to 
display the 
player that 
has joined 

1. 

 
2. 

 

1.​ Before "Player2" 
joins 

2.​ After "Player2" 
joins 

6 A player leaves 
the game 

They are 
removed 
from the 
player list 

1. 1.​ Before player 2 
joins 

2.​ After player 2 
joins 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 40 

 
2. 

 

7 The host player 
leaves the game 

A new player 
is chosen to 
be the host 

1. 

 
2. 

 

1.​ before the host 
leaves 

2.​ after the host 
leaves 

 
 

User Feedback 
I asked some of the members of the people I identified as my target audience from my 
analysis section for their thoughts on the project so far and they said: 

1.​ Person 1: It is difficult to see who you are in the waiting screen 
2.​ Person 1: The start game button should only be visible for the host player 
3.​ Person 2 & 3: They had trouble with the room code system, both of them entered their 

own code into the game code box. 
 
Feedback Point 1 
To show players who they are I added an additional property to the player list, "isMe", which 
is sent whenever the player list updates. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 41 

 
And then on the client: 

 
Feedback Point 2 
For this point, I made it so that the "become_host" event triggered and then changed the 
visibility of the Start Game based on the value provided in it.

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 42 

 
Feedback Point 3 
As two of my target audience had issues understanding the UI I decided I had to change it. 
Two out of the three people that tested this stage put their own code in the game code box 
before joining the game, and then when they went to add another player into the game they 
put their code in instead of the code that was generated for them 
I came up with three options: 

-​ Require users to create a game code when they are making a game and then make 
this the code that people have to put in 

-​ Separate the main screen into one section for joining a game and one section for 
creating a game 

-​ Create an intermediary screen which only shows when the join room button is clicked 
which is where the game code entry exists. 

 
I decided to split the sections where players join and create games because it lets players 
see all the pathways they can take and will reduce the number of clicks needed to join the 
game. Firstly, I created a modified version of a screenshot using paint to get an idea of what 
it should look like: 
 

 
 
which I then used as guidance for modifying the user interface: 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 43 

 
I asked my stakeholders if this version of the ui was clearer and they all said yes. 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 44 

Stage 2 
Create the main interface where most of the game takes place and show the cards in the 
player's hand. 
 

Development 
2.1 - Creating the cards module 
 
As cards will be used on both the client and server I am creating one javascript module that 
can be used for both. I am putting it in a new folder named "common". 
 
In order for this new file to be accessible in the client I added "common" as a new static 
directory: 

 
 
Now in common/card.js I created the card class: 

 
As well as the functions I specified in my design phase 

 
 
I also added constants that directly correlate to the numeric versions of ranks and suits: 

 
 
2.2 
I then added a handler for the “start_game” action on the server. 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 45 

 
It checks if the player sending the action is inside a game and if they are the host of the 
game. If either of these conditions are not true, the game will not start. If the conditions are 
both true, it will execute the runGameLoop method on the game, which for now just tells all 
the players that the game has begun. 

 
 
2.3 
When the "start_game" action is received on the client, It hides the waiting screen and 
shows the play screen. 

 
 
I created arrays for the hand and selected cards: 

 
and then added the response handler for it: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 46 

 
 
I created the updateCards() function that gets called whenever there is a change in the hand 
or selected cards array. 

 
Instead of creating the card elements within the updateCards function I created a new 
function, reducing duplicated code: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 47 

 
Each card is represented by an html div element with text (p elements) contained within it to 
show what card and suit it belongs to. 
 
This function creates a card element with markup similar to this: 
 

<div class="card redCard"> 
    <p class="suitIcon top">♥</p> 
    <p class="rankIcon">K</p> 
    <p class="suitIcon bottom">♥</p> 
</div> 

 
Which looks like this when displayed on the page: 

 
 

I then needed to add event listeners to listen to click events for swapping cards between the 
selected and unselected lists. 
 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 48 

function updateCards() { 

    handCardsContainer.innerHtml = "" 

    selectedCardsContainer.innerHtml = "" 

 

    for (const cardIndex in handCards) { 

        const card = handCards[cardIndex] 

        const cardElement = createCardElement(card) 

        cardElement.addEventListener("click", () => { 

            handCards.splice(cardIndex, 1) 

            selectedCards.push(card) 

            updateCards() 

            console.log(handCards, selectedCards) 

        }) 

        handCardsContainer.appendChild(cardElement) 

    } 

 

    for (const card of selectedCards) { 

        const cardElement = createCardElement(card) 

        selectedCardsContainer.appendChild(cardElement) 

    } 

} 

 
In green is the added event listener which was intended to move cards from my hand to the 
table.  
 

Before pressing on a card: 

 
After pressing on a card: 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 49 

 
As you can see, the cards didn't move from the hand, they just duplicated at the top. To 
debug this I logged the values of the hand and selected arrays in the console (highlighted in 
yellow). 

 
But the result seemed correct. I then identified the issue: I was setting innerHtml instead of 
the correct name innerHTML. 
 
I fixed this issue and copied it for moving cards back from the selected list to the hand. 
Below is the final version of this function, with all the changes made and added events on 
the selected cards array of cards to move them back into the hand as well as a restriction on 
the number of cards that can be selected at one time. 

 
Before clicking a card: 

 
After clicking on a card: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 50 

 
 

 
End of Stage Testing 
 

# Test Expected output Output Output Description 

1 The host 
player presses 
the start 
game button 

The waiting screen 
is hidden for all 
players and the 
game screen is 
now shown for all 
of them. 

1.

 
2. 

 

1.​ Before pressing 
start button 

2.​ After pressing start 
button 

2 A player 
presses on one 
of the cards in 
their hand 

The card is moved 
to the centre of 
their screen 

1.​

 
2.​

1.​ Before pressing on 
card 

2.​ After pressing on 
the 2 of spades 
card 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 51 

​
 

3 A player 
presses on one 
of the cards 
previously 
selected 

It returns to their 
hand 

1. 

 
 

2. 

 

1.​ Before pressing on 
the selected card 

2.​ After pressing on 
the selected card 

4 A player 
presses on one 
of their cards 
when there 
are four 
already on the 
table 

Nothing happens. 1. 

 
2. 

 

1.​ Before pressing on 
card in hand 

2.​ After pressing on 
card in hand (no 
result) 

 

User Feedback 
For this stage, I again asked my stakeholders for feedback. From their feedback I got the 
following points: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 52 

 
1.​ Make the cards sort when they are moved between the hand and the selected cards 
2.​ It's a bit vague what the name input boxes mean 
3.​ When copy and pasting codes, it does not always seem to work 

 
Feedback Point 1 
To make the cards sort, I implemented the sort function specified in my design, however I 
renamed it to sortCardsByRank for clarity. 

 
I then made the player's hands sort before being sent to them in the startGame method. 

 
When playing the game, cards get moved back and forth between the player's hand and the 
selected hand. I also added the sort function here that is ran when cards are moved back: 

 
I decided not to add it for the selected cards array as this should make it easier for the 
player to track where the cards they place are going. 
 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 53 

Feedback Point 2 
When creating games, there was some confusion over if the Name input box set your 
username or the name of the game room. To fix this I renamed the placeholder text to 
Username 

 
 
Feedback Point 3 
I found when players copy the game code from the waiting screen there is sometimes some 
whitespace either side of the game code. When pasting this into the game code entry box it 
will not recognise the code as valid.  
 
To fix this, I applied the trim method to the game code string before sending it to the server. 

 
 
This fixed the issue. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 54 

Stage 3 / 4 
Although initially I split the development of the game loop into two stages, as I began I 
realised that this would not be a good approach as the game loop logic relies on there being 
two events that could occur: a card being placed or someone pressing cheat. For this reason, 
I merged the two stages into one. 
 

Development 
To begin with, I began writing the gameLoop function. 
 

async gameLoop() { 
    let previousRank = null 
    let currentRank = 0 
 
    let tableCards = [] 
    let justPlacedCards = [] 
 
    let playerIndex = 0 
    let previousPlayer = null 
 
    [3.1] 
    while (true) { 
        const player = this.players[playerIndex] 
 
        [3.2] 
        this.currentPlayer = player 
        this.updatePlayerList() 
 
        [3.3, 3.4, 3.5] 
        for (const otherPlayer of this.players) { 
            otherPlayer.ws.send(JSON.stringify({ 
                action: "start_turn", 
                previous_rank: previousRank, 
                current_rank: currentRank, 
                can_accuse_cheater: previousPlayer != null && previousPlayer != otherPlayer, 
                your_turn: otherPlayer == player, 
            })) 
        } 
 
        [3.6] 
        let messageData; 
        let messageSource; 
        // wait for either: 
        // - place_cards event from current player 
        // - accuse_cheater event from any other player 
        await new Promise((resolve) => { 
            const placeCardsListener = (message) => { 
                const possibleMessageData = JSON.parse(message.data) 
                const action = possibleMessageData.action 
                if (action == "place_cards") { 
                    player.ws.removeEventListener("message", placeCardsListener) 
                    resolve() 
                    messageData = possibleMessageData 
                    messageSource = player 
                } 
            } 
            player.ws.addEventListener("message", placeCardsListener) 
 
            for (const player of this.players) { 
                const accuseCheaterListener = (message) => { 
                    const possibleMessageData = JSON.parse(message.data) 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 55 

                    const action = possibleMessageData.action 
                    if (action == "accuse_cheater") { 
                        resolve() 
                        messageData = possibleMessageData 
                        messageSource = player 
                    } 
                } 
                player.ws.addEventListener("message", accuseCheaterListener) 
            } 
        }) 
 
        const action = messageData.action 
        if (action == "place_cards") { 
            const cards = [] 
            // remove cards from player hand 
            for (const cardData of messageData.cards) { 
                cards.push(new Card(cardData.rank, cardData.suit)) 
                for (const cardIndex in player.hand) { 
                    const cardInHand = player.hand[cardIndex] 
                    if (cardInHand.rank == cardData.rank && cardInHand.suit == cardData.suit) { 
                        player.hand.splice(cardIndex, 1) 
                        break 
                    } 
                } 
            } 
            tableCards.push(...justPlacedCards) 
            justPlacedCards = cards 
            player.ws.send(JSON.stringify({ 
                action: "update_cards", 
                cards: player.hand.map(card => card.getData()) 
            })) 
            previousPlayer = player 
            previousRank = currentRank 
 
            currentRank += 1 
            if (currentRank > 12) { 
                currentRank = 0 
            } 
 
            playerIndex += 1 
            if (playerIndex >= this.players.length) { 
                playerIndex = 0 
            } 
 
        } else if (action == "accuse_cheater") { 
            let allCardsValid = true 
            for (const card of justPlacedCards) { 
                if (card.rank != previousRank) { 
                    allCardsValid = false 
                } 
            } 
             
            [3.7] 
            let playerToPickup = null 
            if (allCardsValid) { 
                playerToPickup = messageSource 
            } else { 
                playerToPickup = player 
            } 
            playerToPickup.hand.push(...tableCards, ...justPlacedCards) 
            playerToPickup.hand = sortCardsByRank(playerToPickup.hand) 
            playerToPickup.ws.send(JSON.stringify({ 
                action: "update_cards", 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 56 

                cards: playerToPickup.hand.map(card => card.getData()) 
            })) 
 
            tableCards = [] 
            justPlacedCards = [] 
            previousPlayer = null 
        } 
 
        [3.x] 
        if (previousPlayer != null && previousPlayer.hand.length == 0) { 
            // TODO: start end game sequence 
            console.log(previousPlayer.name, "wins") 
            return 
        } 
    } 
} 

 
3.1.1 - swapping to one loop 
Instead of using a for loop nested inside a while loop as specified in my design I decided to 
use a single loop, instead tracking the current player and turn order manually. The 
advantages of this approach are: 

-​ The game itself doesn't lend itself to this approach in the way that it is a continuous 
loop of turns, not a loop of rounds 

-​ If one player leaves in front of the current one playing we no longer need to go over 
that iteration 

-​ When someone presses cheat, we don't want to skip the current player's turn. Doing it 
with one loop means we can start the same player's turn again without looping 
through everyone. 

 
3.1.2 - making current player clear 
I wanted it to be clear whose turn it was when the game was being played. To do this, I 
decided to make the name of whoever was currently playing bold on the player list. 
 
For the adding the player list to the game screen, I updated the updatePlayerList method of 
the Game class. 
 

Before 

 

After 

 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 57 

I changed the implementation of the function to instead get the data from a new method 
getData defined on the Player class, copying the system i am using on the card class to get 
the data to be sent publicly to clients. Below is that new getData method: 
 

 
 
I added the currentPlayer attribute to the Game class to allow for this functionality 
 
3.1.3 - player ids 
When sending the "start_turn" action to other players, I had to make sure the current player 
did not receive it. I added a check to see if the player ids were the same. This did not work as 
expected, and logging the player ids it became clear why: 

 
output: 

 
 
I had not implemented player ids. I was going to add them, but I then realised that I might 
not need player id. Instead, I decided to compare the references to the player objects 
directly, as each player will only ever have one player object. 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 58 

 
 
I have made the decision that I will no longer give any player an id as it would add 
unnecessary extra complexity to my project. 
 
3.1.4 - changes to start_turn (server -> client) event 
 
 

your_turn 
no changes 
 
previous_rank 
Multiple cards can be played and other information about last cards played does not need to 
be stored.  
 
current_rank​
In my design, I said that above the selected cards there would be text saying what the 
previous card placed was. Whilst adding this text, I realised that it could be confusing for 
players. I decided that the best option was to add both the text displaying the last card 
placed and the card that is now supposed to be placed as: 

-​ The previous card text is useful for players wondering if the last player cheated 
-​ The previous card text may not always be displayed - for example when a round is 

starting 
-​ The current card text is useful for players on their turns and for anticipating what 

card is being placed. 
 
can_accuse_cheater 
There are two positions in the game where it would not be possible or make sense to accuse 
someone of cheating: 

-​ When there was no previous player, for example at the start of the game or after 
someone has already been accused to cheating 

-​ When you just had a turn you can't accuse yourself of cheating. 
 
Instead of telling the clients who had or hadn't just played I added this new attribute to the 
start_game object. 
 
 

Before (Design) After (after development) 

your_turn - boolean 
previous_card - Card 

your_turn - boolean 
previous_rank - number 
current_rank - number 
can_accuse_cheater - boolean 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 59 

3.1.5 - cleaning up start turn message 
Instead of sending the start_turn message separately for the current player and all other 
players I merged this into one loop. 
 
Before it looked like this: 

 
And now it looks like this: 

 
"your_turn" is now set individually for each player based on if it is the one who has a turn. 
 
3.1.6 - waiting for events 
In order to wait for the place cards or accuse cheaters events to arrive while remaining in 
the same point of the loop I decided to use async promises. When creating the promise we 
also await the new object we have created. Once the resolve function is called it returns back 
out into the main game loop. Inside the promise it creates event listeners that listen for 
cheat and place card events. 
 
 
3.1.7 - removing duplicate code 
For the check to make sure that all cards in a hand are valid I flattened it out so that the 
code is no longer duplicated. 
Before: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 60 

 
After: 

 
 
3.2 
Client 
I made the place cards and accuse cheater buttons send events to the client 

 

 
I also wrote the handling for the two main events that would be required for the game to 
run. 
Firstly I added the following to the player_list_update event to update the player list in the 
player screen. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 61 

 
 
And then for the start_turn event: 

 
 
3.3 
In order to display the message that appears when players have pressed the done button 
without placing cards I added a new text element: 

 

 
 
I am also going to use this element to display messages that indicate if a player was 
cheating or not, with the use of a new action type, "info_text_update". 
 

Action  attributes 

info_text_update  Server -> Client message - string 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 62 

 

 
When testing this I also found a bug with the above code. Instead of the player who cheated 
getting the cards, the player whose turn is currently was got the cards. I fixed this by 
changing "playerToPickup = player" to "playerToPickup = previousPlayer" 
 
 

End of Stage Testing 
Below is a merged table from the two testing tables from stages 3 and 4 
 

# Test Expected output Output Output Description 

3.1 A player on 
their turn 
presses the 
done button 

the cards in their hand 
are sent to the server. 
It is now the next 
player's turn and the 
previous player can no 
longer move their 
cards. 

1. 

 
2. 

 

1.​ Before pressing 
done button 

2.​ After pressing 
done button 

3.2 A player on a message is shown 1. 1.​ Before pressing 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 63 

their turn 
presses the 
done button 
without 
placing cards 

that states they need 
to place cards down. 

 
2. 

 
 

done button 
2.​ After pressing 

done button 

3.3 A player 
presses on a 
card without it 
being their 
turn 

nothing happens 1.

 
2.

 

1.​ Before pressing 
on a card 

2.​ After pressing on 
a card 

3.4 The last player 
ends their turn 

The game loops back 
to the first player's 
turn. 

1. 

 
2.  

 

1.​ Before ending 
last player's turn 
(it is player 3's 
turn indicated by 
their bold name) 

2.​ After ending last 
player's turn 
(it is player 1's 
turn indicated by 
their bold name) 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 64 

4.1 A player 
presses cheat 
when another 
player was 
cheating 

the cards on the table 
go into the hand of the 
cheater 

1. 

 
2. 

3. 

 

1.​ The invalid cards 
played by 
"Player 1" 

2.​ The hand of 
"Player 1" before 
they are accused 
of cheating 

3.​ The hand of 
"Player 1" after 
being accused of 
cheating 

4.2 A player 
presses cheat 
when the other 
player was not 
cheating 

the cards on the table 
go into the hand of the 
accuser 

1. 

 
2. 

 
3.

 
4.

 

1.​ The valid cards 
played by 
"Player 1" 

2.​ The hand of 
"Player 2" before 
they accuse 
"Player 1" of 
cheating 

3.​ Message sent to 
clients when the 
"Player 2" 
pressed the 
cheat button. 

4.​ The hand of 
"Player 2" after 
they accuse 
"Player 1" of 
cheating 

4.3 A player 
presses cheat 

play continues from the 
one after the player 
challenged 

1. 1.​ Invalid cards 
played by player 
1 

2.​ Turn order after 
player 4 pressed 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 65 

 
2.

 

"cheat!" 

 

User Feedback 
1.​ Players should be able to see how many cards are in their opponent's hands 
2.​ There should be a way to see how many cards have been placed and how many cards 

are on the table 
3.​ Needs to add a way to call cheat even if the player does not have cards so that they 

can't lie on their last turn. 
 
Feedback Point 1 
To begin with, I wanted the cards to fan out however I decided that it was infeasible due to 
the number of cards that players may have in their hand. 
 
Using paint, I created a concept for what it might look like with a number indicating how 
many cards were in a hand 

 
I then tried it on a card background so that it was clearer that it was cards that were being 
counted. 

 
To add this, I added a new item in the player > getData function called handSize. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 66 

 
 
and now on the client, I added a new element to the in-game player list when the 
player_list_update event is received. 

 
 
Instead of the background being red, I decided to make it grey so that it was more readable. 

 
Feedback Point 2 
I again created a concept for this 

 
 
 
I also added a new action "place_cards" which triggers after cards have been placed by 
some player. 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 67 

Action  attributes 

place_cards  Server -> Client cards_on_table - number 
cards_just_placed - number 

 
On the server, I send the action after cards have been placed: 

 
And then on the client I add the appropriate number of cards to the container. 

 
 
which when implemented looked like this: 

 
 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 68 

Feedback Point 3 
I will be deferring the response to this feedback point until the next stage so I can get an 
idea of how the game should play and as I am focusing on the end-of-game part of the 
project. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 69 

Stage 5 
At the end of this stage I aim to have close to a feature complete version of my game. I will 
add the end of game logic and ensure that players that leave are handled gracefully, 
preventing errors and allowing the game to continue. 
 

Development 
5.1 - end game event 
To begin with, I needed a way to indicate to clients that the game had ended. To do this I 
created a new action type: 
 

Action  attributes 

end_game  Server -> Client game_over_text - string 
can_play_again - boolean 

 
The game over text will say who won e.g. "Player 1 won the game." 
 

 

 
 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 70 

5.2 - exiting games 
To implement the exit buttons, I began by making the exit game buttons send the 
leave_game action as described in my design. 
 

 
 
I also moved the code that hid all the screens and showed the start screen to trigger when a 
new action was triggered from the server "leave_game" 
 

Action  Description 

leave_game  Server -> Client Sent from a server to the 
client when the player is to 
leave a game 

 

 
 
 
Below: the server "leave_game" handler 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 71 

 
 
5.3 - play again button 
Now for the play again button, I decided that the button would only appear for the host 
player. This was because if other players pressed it before the host did then they would be in 
a game that they couldn't start. 
 

Action  

play_again  Client -> Server

 

 
 
And then on the client, I toggle the visibility of the play again button based on the attribute 
set on the "end_game" event 

 
 
5.4 - event listener warning 
I noticed that I was getting these warnings in my project. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 72 

 

 
 
To fix this, I added a new variable "listenersToRemove" which I push references to event 
listeners and their source websockets. After the listeners have returned, I remove them all 
from their sources. This fixed the issue. 

 
Console output after playing a round: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 73 

 
 
5.5 - restricting gameplay to valid numbers of players 
Firstly, I added a new element on the waiting screen to display a new error message. 

 
I created a new action which triggers this text to show: 
 

Action  attributes 

waiting_screen_error  Server -> Client message - string 

 
Now, when the start_game event is ran, the numbers of players in the room are checked: 

 
and an error message is sent to the host. 

 
5.6 - end of stage 4 feedback point 3 
I now came back to the third feedback point given by my target market in the previous 
stage. 
"Needs to add a way to call cheat even if the player does not have cards so that they can't 
lie on their last turn." 
 
To complete this point, I moved the code that checked if the previous player has won into the 
if statement for the "place_cards" event, before the previousPlayer variable gets set to the 
currentPlayer and the game loop continues. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 74 

 
 
5.7 - Handling players leaving mid-game 
For players who left the game, I found these scenarios where some action would need to be 
taken: 

-​ When any player leaves: 
-​ remove player from player list 
-​ move cards from the hand of the player into the discard pile 

-​ When a player leaves on their turn. 
Solution: 

-​ skip to next iteration of the while loop (playerIndex although the same value 
will now reference the next player in the array) 

-​ I also needed to move the playerIndex check to the start of the while loop as 
it was now possible that if the last player in the players array leaves then 
playerIndex will now be outside of the bounds of the array 

-​ When the previous player leaves and cheat is called on them 
-​ set previousPlayer to null when they leave 

-​ When a player before the current one in the turn order leaves 
-​ subtract one from playerIndex 
-​ Also add a negative player index check to the while loop 

-​ When a player after the current one in the turn order leaves 
-​ no extra logic is required here 

-​ If a player leaves and there are only two people left in the game 
-​ end the game with the message "Not enough players to continue" 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 75 

For the first point, I needed to add a new pathway for the branching on each game turn:​

 
 
In the promise preceding this if statement, I had to add two event listeners. One for the 
"leave_game" action and the other for the websocket close event. I had a concern about the 
order of event listeners: if the order was random then I would have to design the program to 
expect either one first. To check this I logged a message in the console and checked which 
one triggered first. Each time I tested it the listener in the main.js was triggered first. 

 
 
I renamed the placeCardsListener function to currentPlayerListener and the 
accuseCheaterListener to inGameActionListener, as it now contains both "accuse_cheater" 
and "leave_game" events. 
 
I changed the action variable's name to messageAction and this is now assigned within the 
event listeners. I did this to make both the "leave_game" and websocket close events lead to 
the same result. 

 

​

 
 
As I was now adding a new event listener type, I had to restructure the listenersToRemove 
variable. Instead of a list of arrays [websocket, listener] I now made it [websocket, 
eventName, listener] where eventName is either "close" or "message". 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 76 

 
 
I moved the out of bounds player index check to the beginning of the game loop. 

 
 
 
Here is the code that runs after a "leave_game" action or websocket close event is received: 

 
Instead of subtracting one from the current index if the player that left was before the 
current one, I check the index of the current player. The benefit of this method is that I firstly 
do not need to implement any new variable to track the index of the players that trigger 
events and also if multiple players left, the index could reference a player that doesn't exist.  
 
5.8 - Joining ongoing games 
I also realised that players could join the game mid way through. To prevent this I needed to 
add a way for the main.js event listener to check if a game was ongoing or not. To do this, I 
added a new attribute to the game class: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 77 

 
I then set this to true in the startGame method: 

 
 
Now in the main.js start_game action handler, if the game is found to be ongoing then an 
error is sent to the client and the handler returns: 
 

 
 

 
 
And now when the game ends, the ongoing flag is set to false. 

 
 
5.9 - Ensuring request validity 
To make sure no malicious players could send a cheat action when they were not supposed 
to be able to, I added a check for previousPlayer being null or the previousPlayer being the 
one sending the request. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 78 

 
 

End of Stage Testing 
 

# Test Expected output Output Output Description 

1 A player places 
the last cards in 
their hand and 
the following 
player takes their 
turn 

The player that 
placed the last 
cards down wins, 
show game over 
screen 

1. 

 
2. 

3. 

1.  Player 3 places their last 
card 
2. List of players after 
player 3's turn 
3. Player 1 places some 
cards​
4. The game over screen is 
shown 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 79 

 
4. 

 

2 A player leaves 
the game 

The cards from 
their hand are 
moved to the 
discard pile 

1. 

 
2. 

3. 

 

1.​ The player list before 
player 2 leaves the 
game 

2.​ The player list after 
player 2 leaves the 
game 

3.​ The discard pile 
after player 2 leaves 
the game 

3 A player leaves 
the game, 
bringing the total 
number of players 
below 3 

The game ends. 
Show the game 
over screen. 

1. 1.​ The player list before 
player 3 leaves the 
game 

2.​ The game over 
screen shown after 
player 3 leaves the 
game 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 80 

2. 

 

4 A player leaves 
the game on their 
turn 

The next player's 
turn begins 

1.

2.​

 

1.​ The player list before 
player 2 leaves the 
game - it is player 
2's turn. 

2.​ The player list after 
player 2 leaves the 
game - it is now 
player 3's turn 

5 A player leaves 
the game after 
placing cards 

cheat can not be 
called on them 

1. 1.​ Player 2 places 4 
incorrect cards and 
then leaves 

2.​ Player 1's screen 
after player 2 leaves. 
The cheat button is 
disabled. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 81 

2.​

 

 
 

User Feedback 
Feedback Point 1 
Names should have a maximum length. 
I previously had a check to make sure that the username was at least one character. After 
testing with my stakeholders I found that users could make their usernames very long and 
this would cover up the whole screen. To fix this issue I created a maximum number of 
characters that usernames could be. I settled at 16 characters as anything past this looked 
very long. 
 
Along with adding a new validity check, I rewrote the previous check's error message to 
make it more descriptive. 
 
This is the check before: 

 
 
And this is the check after: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 82 

 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 83 

Play Test 1 
I completed a play test with my stakeholders. 
 
From the experience, I noted down the following points of feedback and observations: 
 

1.​ On some devices the player list was always in bold: 

 
My solution for this was to make the text a lighter colour for the players who did not 
have a turn. 

 
 
 

2.​ The cards at the top of the screen should disappear when someone has picked up 
cards from cheating. 

 
To fix this I sent a "place_cards" event when the cheater has been identified 

 
 

3.​ When a player has placed all of their cards and another player presses cheat, the 
game does not check if the last player has won. 
 
I worked out that the reason for this was that previousPlayer gets assigned to null if 
a cheater is called: 

 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 84 

To fix this I could have created another variable and checked this instead of checking 
previousPlayer. Instead I decided to extract the end of game logic into its own 
method. 

 
Extracted endGame method 

 
which can now be called from both the end of turn and cheat actions. 
End of game action: 

 
Cheat action: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 85 

 
 

4.​ The UI with cards have been placed is confusing. See below: The card that have been 
placed are not next to the text that says what has been placed 

 
To fix this I again created a concept in paint to see what it might look like if I 
rearranged the UI elements. 

 
 

 
This version is better as the "Just Placed" text is now next to the card indicator. The 
cards already placed are moved off to the left of the screen and the "Your Turn" text 
has been moved downwards to accommodate this. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 86 

 
I separated the just placed and place next texts out into their own elements: 

 
And rearranged the dom elements to closer represent the layout, making css styling 
easier 

 
 
After implementing the above changes, the game UI now looks like the following: 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 87 

Play Test 2 
I conducted one last play test and set of changes before finishing the project. 
 

1.​ The "Just Played" text does not disappear when someone has pressed cheat 

 

 
I fixed this by setting the previous rank to null when someone presses it 

 
 

2.​ When a new game happens, the status text is not reset 

 
I fixed this by setting the content of this stats text to an empty string when the 
start_game event was sent. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 88 

Evaluation 
 

Reviews 
I got three reviews. Two from people that were familiar with the game and one that wasn't. 
 

1.​ Person One 
Is the game enjoyable? 
yes, very fun to play against your friends and try and make them look like fools 
 
What are the positive aspects of the game? 
the icons for the cards, the speed of the processing time, the fact that names can be 
unique 
 
What are the parts of the game that could be improved? 
knowing what card has been place and what card is next makes it a bit confusing 
sometimes for some people  
 
Are the UIs easy to navigate? 
yes apart from knowing the cards number that have been placed and what is next 
can be a bit confusing 
 
Is the game aesthetically pleasing? 
The card designs are sleek and pleasing to the eyes, how the cards are arranged into 
groups of the same number value helps.  
 

2.​ Person Two 
Is the game enjoyable? 
Yes, the game is quite enjoyable as it is a very easy concept to understand 
 
What are the positive aspects of the game? 
One positive aspect of the game is the card design, it is very easy to tell what card is 
what. Another positive aspect of the game is that you are able to tell who's turn it is 
by highlighting the name of the person and how many cards each person has. 
 
What are the parts of the game that could be improved? 
One area that could be improved is that you should be able to place cards -1 to the 
card that has just been played because if you could only go up it is obvious what 
cards have been played and easy to who is lying later on in the game. 
 
Are the UIs easy to navigate? 
The UI is easy to navigate as it is very simple. 
 
Is the game aesthetically pleasing? 
The game is somewhat aesthetically pleasing with how simple the design is. However, 
some would argue that the game is too simplistic and lacks character with how 
simplistic it is, with it being on a plain white background and the only bit of colour 
coming from the cards. 
 

3.​ Person Three 
Is the game enjoyable? 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 89 

Yes however the game may also require a side application such as discord or xbox so 
that players may communicate with one another. 
 
What are the positive aspects of the game? 
The UI is very intuitive making the game easy to navigate and to learn if the user is 
new. The game functions as expected without errors 
 
What are the parts of the game that could be improved? 
Implement a copy and paste button for the room code to make it easier to send the 
code to other players. Add sounds to the card movements, winning sounds, a sound 
for when somebody is found to have cheated and relaxing music for the main menu 
and in game which can be disabled in a settings menu. As a new player I suggest a 
tutorial level be implemented in order to visually show the users how to play the 
game 
 
Are the UIs easy to navigate? 
Yes very intuitive 
 
Is the game aesthetically pleasing? 
No, the lack of colour and detail in the background give a monotonous tone, by 
effectuating a more colourful background and menu, this may create a more inviting 
and exciting game for people to play 

 

Video Showcase 
In order to gather evidence for my evaluation, I recorded some video footage. These videos 
are available in both my project file within the videos directory and on youtube, where the 
link has been below: 
 

Video Title video path 
youtube link 

Explanation 

4 Players Side-By-Side "4-players-side-by-side.mp4"   
 

In this video I played an 
example round of my game. 

Integration Testing "integration-testing.mp4" 
 

In this video I performed 
each one of my tests. 

 
 

Implementation of features 
In this section I went through every feature stated in my analysis, checking that it is present 
in the final game and evaluating its implementation. For this, I used the footage recorded in 
my video showcase titled "4 Players Side-By-Side" 
 

Feature Completed & 
Timestamp 

Evaluation 

A start screen with options to 
join or create a game 

 Completed
0:00-0:15 

This is the default screen and 
appears when the webpage is 
loaded. 

The ability for players to  Completed I have added this, however when 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 90 

change their display name on 
the start screen 

0:03-0:07 players are in the waiting screen for 
the game it would be useful if they 
could also change it here 

Game rooms are assigned a 
code by which players can 
join rooms by entering the 
code on the start screen. 

 Completed
0:07-0:14 

The game code is displayed in the 
waiting room. To make it easier for 
the code to be shared, it could be 
copied to the clipboard when a 
player clicks on it. 

A "waiting" ui screen  Completed
0:02-0:14 

Fully implemented. 

A list of players on the 
waiting screen 

 Completed
0:02-0:14 

The player list works correctly 
according to the design. If I were to 
continue development I would want 
to make the indicators for 
"me"/"host" clearer and separated 
from the player name as well as 
allowing the host player to kick 
people from the game. 

A start button  Completed
0:02-0:14 

The start button has been added 
and is only displayed for the host 
player. To make it clearer for other 
players I could have made it 
appear but be greyed out, with a 
message on the screen that 
appears 

An exit button visible on both 
the waiting and in-game 
screens 

 Completed
0:02-1:15 

The exit button is shown on both 
screens. The only potential 
improvement I could make is that 
maybe a pop-up should appear to 
ensure the player wants to leave 
and it is not accidentally clicked. 

Before the game starts, the 
cards are placed in a random 
order and split evenly 
between players, one by one 
in the order that players join.  

 Completed
0:16 

This has been implemented. If I 
were to allow the turn order to start 
from anyone then I might need to 
change the first player that the 
cards are given to. 

After someone presses 
“Cheat”, the game begins 
again from the person after 
the one who was challenged. 

 Completed
0:26, 0:31, 0:48, 1:03 

Fully completed. No improvements 
to be made. 

During the game, players are 
able to see how many cards 
their opponents have, as well 
as whose turn it is. 

 Completed
0:16 

Fully completed. There is a player 
list on the side of the screen that 
includes card counters. To improve 
this, I could make it more clear 
when it was someone's turn. 

At the end of a player's turn, 
they select what cards they 
want to play and the correct 

 Completed
0:20, 0:28, … 

I have added this. Given more time 
I would have liked to create more 
concepts for this part of the UI in 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 91 

value for these cards are 
shown to everyone. 

order to make it clearer that X 
amount of Y card have been placed. 

On a turn, players can move 
their cards between their 
hand and the discard pile 

 Completed
0:17 

In the current version of my project, 
cards are moved between the hand 
and discard pile by dragging. If I 
were to improve this, I would want 
to make the cards draggable 
between the deck and hand. 
Currently I do not know how I 
would implement this. 

At any point in the game, 
players can press the “Cheat” 
button, and if the previous 
player was lying, they pick up 
the cards. Otherwise, the 
player who pressed the 
button picks up the cards. 

 Completed
0:23, 0:30, … 

This has been added in full. If I 
were to improve this, I would want 
to make it clearer who was cheating 
and who was telling the truth, for 
example by highlighting the player 
names red or green with texts 
"cheating" or "not cheating" 
depending on the state of the 
game. 

When a game ends, the 
winner is displayed and 
players have the option to 
start another round. 

 Partially Compl…
1:16 

The winner of the game is 
displayed. Only the host player has 
the option to start another round as 
it would have been too complicated 
given the time I had to wait for 
non-hosts to join the game before 
the host player. 

If a player leaves the game 
mid way through, their cards 
are placed on the discard 
pile. 

​Completed
(within integration 
testing) 

This has been added. The only 
improvement to this I can think of 
could be that it keeps the name in 
the player list but the text becomes 
faint. 

 

Integration Testing 
I compiled every test from each previous section and tested them all together to make sure 
it all worked in the final state of the project. The timestamps refer to the time of the test in 
the "Integration Testing" video. 
 

# Test Expected output Completed & 
Timestamp 

1.1 A valid username is entered 
and the create room button 
is pressed 

the screen changes to 
the game waiting screen 
and a room code is 
displayed on the screen 

 Completed
0:00 

1.2 A valid username and valid 
room code is entered and 
the user presses join game 

They are able to join the 
game with no problems. 
the screen changes to 
the game waiting screen 

 Completed
0:04 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 92 

1.3 An invalid room code that 
does not exist is entered 
and the user presses join 

An error is displayed 
stating the room does 
not exist 

 Completed
0:10 

1.4 An invalid username is 
entered with a valid room 
code 

when the user tries to 
join a game an error is 
displayed saying the 
username is invalid 

 Completed
0:18 

1.5 When a new player joins the 
game, the player list 
updates 

the player list updates to 
display the player that 
has joined 

 Completed
0:23 

1.6 A player leaves the game They are removed from 
the player list 

 Completed
0:30 

1.7 The host player leaves the 
game 

A new player is chosen to 
be the host 

 Completed
0:35 

2.1 The host player presses the 
start game button 

The waiting screen is 
hidden for all players and 
the game screen is now 
shown for all of them. 

 Completed
0:40 

2.2 A player presses on one of 
the cards in their hand 

The card is moved to the 
centre of their screen 

 Completed
0:44 

2.3 A player presses on one of 
the cards previously 
selected 

It returns to their hand  Completed
0:46 

2.4 A player presses on one of 
their cards when there are 
four already on the table 

Nothing happens.  Completed
0:49 

3.1 A player on their turn 
presses the done button 

the cards in their hand 
are sent to the server. It 
is now the next player's 
turn and the previous 
player can no longer 
move their cards. 

 Completed
0:53 

3.2 A player on their turn 
presses the done button 
without placing cards 

a message is shown that 
states they need to place 
cards down. 

 Completed
0:57 

3.3 A player presses on a card 
without it being their turn 

nothing happens  Completed
1:00 

3.4 The last player ends their 
turn 

The game loops back to 
the first player's turn. 

 Completed
1:07 

4.1 A player presses cheat 
when another player was 
cheating 

the cards on the table go 
into the hand of the 
cheater 

 Completed
1:11 

4.2 A player presses cheat 
when the other player was 
not cheating 

the cards on the table go 
into the hand of the 
accuser 

 Completed
1:14 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 93 

4.3 A player presses cheat play continues from the 
one after the player 
challenged 

 Completed
1:14 

5.1 A player places the last 
cards in their hand and the 
following player takes their 
turn 

The player that placed 
the last cards down wins, 
show game over screen 

 Completed
1:21 

5.2 A player leaves the game The cards from their 
hand are moved to the 
discard pile 

 Completed
1:30 

5.3 A player leaves the game, 
bringing the total number 
of players below 3 

The game ends. Show the 
game over screen. 

 Completed
1:36 

5.4 A player leaves the game 
on their turn 

The next player's turn 
begins 

 Completed
1:36 

5.5 A player leaves the game 
after placing cards 

cheat can not be called 
on them 

 Completed
1:42 

 

Meeting Success Criteria 
 

# Criteria Test Evaluation 

1 The game includes all 
of the features 
specified in the project 
analysis. 

All aspects of the feature 
list are completed. 

 Partially Completed
All of the features in the feature 
list have been implemented to 
some extent, with the only 
partially completed feature 
being the play again button only 
showing for the host player. 

2 The game is able to 
handle multiple games 
running 
simultaneously. 

Two games can run 
simultaneously 
 
(Given access to a wider 
audience of testers I 
would have wished to run 
more extensive tests than 
this - see more in my 
limitations section above) 

 Completed
See test below. 

3 The game UIs are easy 
to navigate. 

Two-thirds of testers say 
that they find the UIs to 
be easy to use 

 Completed
All three of my testers found the 
UIs easy to use 

4 Players should be able 
to leave games at any 
point without breaking 
gameplay. 

For each decision point, 
have a player leave the 
game at this point. 

 Completed
All tests relating to player leaves 
passed correctly (stage 5 tests) 

5 No information critical 
to gameplay (e.g. the 

Check every event that is 
sent to the client during 

 Completed

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 94 

cards in opponents 
hands) should be 
accessible to clients 
under any 
circumstance unless it 
is specifically for their 
use. 

the lifespan of a game See test below. None of the 
events sent to the clients from 
the page being loaded to the 
game finishing contain any 
information that they shouldn't 
have access to. 

6 The game should be 
able to prevent illegal 
moves (e.g. placing a 
card when it is not 
their turn) 

Check each event handler, 
it should have appropriate 
safeguards and validation 
techniques to ensure the 
event is valid. 

 Partially Completed
See test below. All events can 
only be triggered at expected 
times by the users that send 
them. The reason I have not said 
this is fully completed is as there 
is minimum validation for the 
content of events themselves. 
For example, a malformed 
object could cause the game to 
crash. 

7 The game should be 
enjoyable 

Two-thirds of testers say 
they found the game 
enjoyable to play 

 Completed
As evidenced by the reviews 
above, all three of my 
stakeholders found the game 
enjoyable. 

 

Success Criteria Extended Tests 
(2) Multiple Simultaneous Games 
I tested joining the game, starting the game, and taking actions in the game. There was no 
problem with any of these and all parts of the game worked independently as if they were 
separate instances of the game. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 95 

 

 
 
(5) Checking for information leaking 
 

event event contents Contains leaked 
information? 

join_game {"action":"join_game","room_code":"ytdjna"}  No

player_list_update { 
    "action":"player_list_update", 
    "players":[ 
        {"name":"Player 
1","isHost":true,"handSize":14,"myTurn":false,"is
Me":true}, 
        {"name":"Player 
2","isHost":false,"handSize":17,"myTurn":true,"is
Me":false}, 
        {"name":"Player 
3","isHost":false,"handSize":14,"myTurn":false,"i
sMe":false} 
    ] 
} 

 No
 
The only 
information about 
other players are 
the things that are 
displayed and the 
number of cards 
in their hand. 

become_host {"action":"become_host"}  No

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 96 

start_game {"action":"start_game"}  No

update_cards { 
    "action":"update_cards", 
"cards":[{"rank":1,"suit":2},{"rank":1,"suit":0},
{"rank":2,"suit":0},{"rank":2,"suit":1},{"rank":3
,"suit":2},{"rank":3,"suit":1},{"rank":4,"suit":0
},{"rank":4,"suit":3},{"rank":5,"suit":1},{"rank"
:5,"suit":3},{"rank":6,"suit":2},{"rank":6,"suit"
:0},{"rank":6,"suit":1},{"rank":7,"suit":1},{"ran
k":9,"suit":0},{"rank":10,"suit":0},{"rank":11,"s
uit":3},{"rank":11,"suit":1}] 
} 

 No
 
Only contains the 
cards in the 
client's hand 

start_turn { 
    "action":"start_turn", 
    "previous_rank":0, 
    "current_rank":1, 
    "can_accuse_cheater":false, 
    "your_turn":false 
} 

 No
 
Only contains 
information that 
should be visible. 

info_text_update {"action":"info_text_update","message":""}  No

end_game { 
    "action":"end_game", 
    "game_over_text":"Player 2 won the game.", 
    "can_play_again":true 
} 

 No

leave_game {"action":"leave_game"}  No

 
 
(6) Preventing illegal moves 
 

Event File Correct 
response? 

 

join_game main.js  Yes Any player can trigger this 
action, there is no need to 
check the validity of the 
request. 

create_game "  Yes Any player can create a new 
game. 

start_game "  Yes There is a check for the 
player.isHost flag  

leave_game "  Yes Any player can leave a game. 

place_cards game.js  Yes The place_cards event listener 
is only set on the  

accuse_cheater "  Yes An if statement checks if the 
accuse_cheater event can be 
sent and if it can't then it 
returns. 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 97 

play_again "  Yes The play again listener is only 
set on the host player 

leave_game "  Yes Any player can leave a game. 

 
 

Evaluation Summary 
Aesthetics 
It is clear from my reviews that there is still a bit of a way to go in terms of how my project 
looks. Two out of three agreed that the design was too simplistic although one person said 
the clean design was good.  
 
I do not consider this as a large problem for this first version of the game, as I was primarily 
focusing on UIs thinking first about functionality and usability. If I were to continue working 
on this project, I would further look at both online and offline card games and would think 
about adding a new background colour. 
 

Code Quality & Project Structure 
I have split the project's javascript code up into the following files: 
server: 

-​ main.js 
-​ player.js 
-​ game.js 

client: 
-​ index.js 

common: 
-​ card.js 

 
This has been quite modular, with the card.js module being used across the client and server 
side code. In addition, the player and game classes are stored in their own individual 
modules along with their related functions. 
 
I could have split the client side source into multiple files. For example, one contains event 
listeners, one contains the server communication code, and one contains client-side 
functions. This would have made the solution more maintainable. 
 

Functionality 
I would like to swap from using javascript asynchronous features and promises api in the 
game loop to using queues as it would bring these benefits: 

-​ No events could be missed in dead time where the event listener is not applied yet as 
they would always be caught 

-​ Games could be more easily recorded, paused, replayed, and errors if occurring could 
easily be recovered from without breaking the flow of the game loop. 

 
The disadvantage to this approach would be that firstly I would need to re-write the mass of 
the game logic and secondly I may no longer be able to structure the game loop logically. 
Instead I may need to flatten the state of the game out into a variety of procedures that 
respond to different types of requests coming in taking into account the current state of the 
game, more of which would have to be recorded in game class attributes for example. 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 98 

Despite this, I believe that making this change would be better overall for the game as it 
would no longer rely on promises and could better respond to different events coming in at 
different times. For example: people leaving, a turn time limit, and gameplay events all 
happening simultaneously and the main game "loop" having to account for all of these in 
making its decisions. 
 

Robustness & Error Checking 
Although there is some prevention against invalid requests through the validation of 
requests to only come from the player it is expected from, the general coverage of error 
handling is extremely minimal throughout the project. Throughout the project there are 
opportunities for errors to occur. For example, when a "join_game" is sent there could be an 
error parsing the JSON object, it may then have missing properties which causes the game 
to crash. 
 
In order to improve this, I would firstly need to add try/catch blocks more frequently across 
the project - restarting the game loop if it catches one. 
 

User Experience 
One feature I think would be greatly beneficial to my stakeholders is a settings screen. In 
Harrison's review, he stated he would like the option to place cards below the previous one, 
which is a variation on the game of Cheat. Adding an options menu would allow for players 
to choose which rules they want to play with. 
 
Another feature I would consider adding would be sound effects. This was mentioned by my 
stakeholders as something the game was lacking. 
​
Finally, if I had more time I would improve the player list as stated in the evaluation for the 
waiting screen feature. I would make indicators for "me"/"host" clearer and separated from 
the player name as well as allowing the host player to kick people from the game. 
 

Enhancing Usability 
In terms of usability, my UIs seem simple to use and understandable. This is evidenced by all 
three of my stakeholders finding the UI understandable. 
 
Despite this, I believe that there are still some improvements that could be made: 

-​ To replace the error and information messages with a "toast" popup element.  
This would replace: 

-​  the text on the start screen e.g "The game with the provided code does not 
exist 

-​ errors saying "Three or more people are required to start the game." 
-​ status messages like "Player 1 left the game" and "Player 4 was a cheater" 

​ It could also pop up when a turn starts or players place cards down 
 
This would make it easier to tell when something happens in the game and would make it 
clearer when you have done something wrong. 
 
In addition, although none of my stakeholders said that touch controls were something they 
required from the solution I think this could be an interesting market to consider, especially 
as my project is built using web pages and adding support for touch events shouldn't take a 
large amount of work. 
 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 99 

Limitations in Scalability 
As stated in my success criteria and the limitations section of my analysis I do not have 
access to a large number of people to test my game at scale however given the testing I 
conducted on two games running simultaneously, I can assume that it would work for at 
least a dozen more instances. This assumption becomes limited past small numbers of 
concurrent games as it is much more difficult to predict whether or not it would handle the 
traffic fine or if it would slow down/memory would grow too quickly. 
 
I do not know how I would have gone about stress-testing the system as simulating many 
games going on would be quite a complex problem to solve, especially given the limited 
amount of time I had. 
 
If I were to continue the project and explore the problem of scalability further I might look 
at measuring memory growth, simulating large numbers of clients joining the game and 
taking actions and completing further development cycles with this as a focus. 
 

Conclusion to the project 
Overall, as most of the success criteria have been completed to some extent, my 
stakeholders were satisfied with my solution, and the majority of features have been 
implemented I would say that I was successful in my initial goal of applying a computational 
approach to the game of cheat, creating an online alternative to the card game that allows 
friends to play together from anywhere in the world. 
 
Bringing this project into the further development however,  I would focus on the limitations 
I have identified in my evaluation being: 

-​ Look into other designs for the game, such as different background colours, in order 
to add personality to my game. 

-​ Ditching the current system where event listeners are continuously added and 
removed in order for the game to operate in favour of an event queue based system. 

-​ Adding options and settings screens for players in order for them to enhance and 
modify their experience playing the game. 

-​ Consider scalability as more of a concern, researching ways to simulate large 
amounts of traffic and checking for places where errors could be thrown. 

 
I would also consider expanding the scope of the project. It could support multiple games, 
and the player selects which game they want to play on the start screen. This would make it 
more engaging for players as they have multiple options to choose from. 
 

 

http://hatchibombotar.com


hatchibombotar.com              ​         Candidate Number: xxxx      Center Number: xxxxx 
Page 100 

References 
Cheat (game) - Wikipedia - https://en.wikipedia.org/wiki/Cheat_(game) 
Cheat rules - https://www.pagat.com/beating/cheat.html 
Cardmania card game - https://www.cardzmania.com/games/Cheat 
Skribbl.io - https://skribbl.io 
Http long polling - https://ably.com/topic/long-polling 
NodeJS web server libraries - 
https://reintech.io/blog/best-libraries-for-using-nodejs-with-web-server 
express package - https://www.npmjs.com/package/express 
ws package - https://www.npmjs.com/package/ws​
NodeJS hardware requirements - https://github.com/nodejs/help/issues/1323 
Websocket API documentation - 
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_
client_applications 
Fisher-Yates shuffle - https://en.wikipedia.org/wiki/Fisher-Yates_shuffle 

http://hatchibombotar.com
https://en.wikipedia.org/wiki/Cheat_(game)
https://www.pagat.com/beating/cheat.html
https://www.cardzmania.com/games/Cheat
https://skribbl.io/
https://ably.com/topic/long-polling
https://reintech.io/blog/best-libraries-for-using-nodejs-with-web-server
https://www.npmjs.com/package/express
https://www.npmjs.com/package/ws
https://github.com/nodejs/help/issues/1323
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle

	Programming Project 
	Introduction 
	 
	Project Analysis 
	My Audience 
	Game Analysis 
	 
	Game Research (cardzmania.com) 
	Game Research (skribbl.io) 
	Game Research (Among Us) 
	Conclusions from Game Research 
	 
	Feature List 

	 
	Technical Analysis 
	Web communication technologies 
	Software Requirements 
	Hardware Requirements 
	Computational Methods 
	Thinking abstractly 
	Thinking ahead 
	Thinking procedurally & logically 
	Thinking concurrently 

	Limitations 
	Success Criteria 

	 
	Plan for Development and Testing 
	Development Plan 
	Testing Plan 
	Stage 1 
	Stage 2 
	Stage 3 
	Stage 4 
	Stage 5 


	 
	Design Overview 
	Overall structure 
	Communication 
	Server Design 
	 
	File Structure 


	Client Design 
	Main Screen 
	Waiting Screen 
	Play Screen 
	Game Over Screen 
	Client - Main Variables 
	Client - Functions 


	 
	Iterative Design & Development 
	Stage 1 
	Development 
	1.1 
	1.2 
	 
	1.3 
	1.4 
	1.5 
	1.6 
	1.7 

	End of Stage Testing 
	User Feedback 
	Feedback Point 1 
	Feedback Point 2 
	Feedback Point 3 

	 

	 
	Stage 2 
	Development 
	2.1 - Creating the cards module 
	2.2 
	2.3 

	 
	 
	End of Stage Testing 
	User Feedback 
	Feedback Point 1 
	Feedback Point 2 
	Feedback Point 3 


	 
	Stage 3 / 4 
	Development 
	 
	3.1.1 - swapping to one loop 
	3.1.2 - making current player clear 
	3.1.3 - player ids 
	3.1.4 - changes to start_turn (server -> client) event 
	3.1.5 - cleaning up start turn message 
	3.1.6 - waiting for events 
	3.1.7 - removing duplicate code 
	3.2 
	3.3 

	End of Stage Testing 
	User Feedback 
	Feedback Point 1 
	Feedback Point 2 
	Feedback Point 3 


	 
	Stage 5 
	Development 
	5.1 - end game event 
	5.2 - exiting games 
	5.3 - play again button 
	5.4 - event listener warning 
	5.5 - restricting gameplay to valid numbers of players 
	5.6 - end of stage 4 feedback point 3 
	5.7 - Handling players leaving mid-game 
	5.8 - Joining ongoing games 
	5.9 - Ensuring request validity 

	End of Stage Testing 
	User Feedback 
	Feedback Point 1 


	 
	Play Test 1 
	Play Test 2 

	Evaluation 
	Reviews 
	Video Showcase 
	Implementation of features 
	Integration Testing 
	 

	Meeting Success Criteria 
	Success Criteria Extended Tests 
	(2) Multiple Simultaneous Games 
	(5) Checking for information leaking 
	(6) Preventing illegal moves 


	Evaluation Summary 
	Aesthetics 
	Code Quality & Project Structure 
	Functionality 
	Robustness & Error Checking 
	User Experience 
	Enhancing Usability 
	Limitations in Scalability 

	Conclusion to the project 

	References 

